
SECTION COVER  THE TITLE HERE IS ALL CAPS!!!
SELECT & KEEP  1 OF 3 OPENING SLIDE.

From 60 Million to 25 
Billion.
8 Years of Scaling a Core 
System with PostgreSQL in 
Fintech

18 March 2025 / Nordic PGDay 2025
Dmytro Hnatiuk
Principal Software Engineer @ Wise



NB: Google Slides template formatting is annoying

Wise in numbers:
12.8m
active customers worldwide 

6000

£118.5bn
across borders in the last financial year

people work at Wise



REMEMBER  THE TITLE HERE IS ALL CAPS!!!

SCALING 
JOURNEY



Role of Finance database 
● The Golden Source: Serves as the single source of truth for external 

regulatory, market, and financial reporting.
● Operational Backbone: Powers internal operational controls, reconciliations, 

and ensures smooth financial workflows.
● Critical for Safeguarding: Used as the primary data source for safeguarding 

customer funds and ensuring compliance with financial regulations.



Once you’ve entered your text, select both content blocks and center the whole selection vertically. 

This means...

Data must be always available, accurate, and 
reliable. 

Any compromise here risks financial stability and trust.



25B
Rows in a main table

Scale numbers

Database growth

37Tb
Total size



~ 80k
Processed events per minute

> 100
Kafka topics consumed by application

~ 20k
Database transactions per second

Scale numbers

Data volumes



Once you’ve entered your text, select both content blocks and center the whole selection vertically. 

I will focus on relational databases.
We can scale services horizontally with ease 

these days (adding more instances, etc). 

Relational databases don't scale the same 
way.



Database will be your bottleneck



Small efforts = Big gains

Sweet spot



Why my application is slow?



REMEMBER  THE TITLE HERE IS ALL CAPS!!!

PYRAMID OF 
DATABASE 
SCALABILITY 
©



The pyramid.

Basic database setup

What It Involves: Adjust basic parameters 
like memory allocation, disk I/O, buffer 
sizes, and query cache settings. These are 
the "quick wins" in database performance 
optimization.
Why It Matters: This foundational layer 
ensures that the database is functioning 
efficiently out-of-the-box. Basic database setup

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Basic database setup
Problem: Scheduled processes experienced performance spikes, increased 
execution time and unstable execution durations.

Solution: Database was vertically scaled at relatively low cost of $540/month for 3 
instances. Performance drastically improved and processes start running stable.
AWS EC2 r5.2xlarge to r5.4xlarge.



The pyramid.

Indexing

What It Involves: Adding indexes, limiting 
full table scans, and reviewing 
slow-running queries
Why It Matters: Indexes can dramatically 
reduce query time, often with minimal effort 
and little need for database deep dives. Basic database setup

Indexing

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Indexing
Problem: After release of new query type, latency of processes degraded significantly. 
Backlogs start to grow. Manual execution of query plan confirm all indexes in place.

Solution: We had a wrong index. ORM (hibernate) was doing type conversion to text, 
instead of long, causing database planner to fallback to full table scan.

Append  (cost=0.12..22485439.59 rows=21886841 width=824) 
(actual time=0.047..0.047 rows=0 loops=1)
…
  ->  Index Scan using idx___id_closed on _____  
(cost= rows=7984054 width=827) (actual time=0.036..0.036 
rows=0 loops=1)
        Index Cond: (____id = 1278931734)
        Buffers: shared hit=5

select * from ____ 

where ____._____id::text='1278931734'



The pyramid.

Application Fixes

What It Involves: Optimizing the application 
logic to reduce the number of database 
calls. Implementing caching strategies to 
prevent repeated database hits for the 
same data, as well as refactoring inefficient 
queries and ensuring the application 
interacts with the database in a streamlined 
way.
Why It Matters: A well-optimized 
application can handle more load without 
placing undue stress on the database, 
postponing the need for more complex 
database optimizations. Basic database setup

Indexing

Application fixes

Sc
al

e 
an

d 
C

om
pl

ex
ity



Isnʼt it a talk about databases?



The pyramid. Real world example.

Application Fixes
Problem: Latency of events processing was higher than expected. After investigating 
we realized that some tables queried more than they should. Caching was not 
effective.

Solution: We had to rewrite number of queries to use application-level cache. In 
resulted in 4ms 15%) latency improvement.



The pyramid.

Queries optimisation

What It Involves: Tuning SQL queries to 
improve performance, such as optimizing 
JOIN operations, reducing subqueries, and 
using appropriate data types. Leveraging 
query analysis tools to identify bottlenecks.
Why It Matters: Poorly written queries can 
bottleneck performance. Query 
optimization ensures youʼre getting the 
most out of your database without 
overburdening it. Basic database setup

Indexing

Application fixes

Queries optimisation

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Queries optimisation
Problem: Batch process had a complex SQL composed from 5 large sub-queries. At 
one day query performance significantly degraded.

Solution: We broke down complex, 5-queries CTE into smaller queries to help 
database in choosing a right query plan.
P.S. Avoid batch processes!

FROM TO



The pyramid.

Workloads segregation

What It Involves: Splitting read and write 
workloads across different systems or 
using read replicas for read-heavy queries.
You should start thinking about moving 
some of your heavy aggregations 
workloads to Data Warehouse or Data Lake.
Why It Matters: By segregating workloads, 
you ensure that one set of operations 
doesnʼt affect the performance of another. 
For instance, long-running analytical 
queries wonʼt slow down your transactional 
database. Basic database setup

Indexing

Application fixes

Queries optimisation

Workloads segregation

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Workloads segregation

Problem: Mixing workload profiles means database cannot be optimised of neither.
Long running batch processes often negatively impact real time processing latency.



The pyramid. Real world example.

Workloads segregation

Rapid business growth.
=

Pressure for a database.



The pyramid. Real world example.

Workloads segregation
Solution: Workload types segregation to different environments.



The pyramid.

Data modularization

What It Involves: Breaking the database 
into logical modules that correspond to 
different areas of the business (e.g., user 
data, transaction data, logs). This should 
involve splitting a monolithic database into 
smaller, modular databases for different 
functionalities.
Why It Matters: Modularizing your 
database reduces complexity and makes it 
easier to maintain and scale individual 
components. Each module can be tuned 
and scaled according to its specific needs, 
which enhances overall performance. Basic database setup

Indexing

Application fixes

Queries optimisation

Workloads segregation

Data modularization

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Data modularization

From… To…

Problem: Single multi-tenant database was serving multiple usage profiles under one 
roof, leading to performance bottlenecks, maintenance complexity and Resource 
contention.

Solution: We split a single monolith to three smaller in size databases.



The pyramid.

Partitioning

What It Involves: Splitting large tables into 
chunks (often by time) to reduce the 
amount of data processed in queries.
Why It Matters: Partitioning reduces the 
amount of data scanned during queries, 
making them faster. This would also guide 
you into a future archival - forcing to think 
about you data access patterns. Basic database setup

Indexing

Application fixes

Queries optimisation

Workloads segregation

Data modularization

Partitioning

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Partitioning
Problem: Performance of large tables started degrading.  

Solution: We partitioned large tables by monthly chunks, easing job for database 
management tasks and optimise data access. Duration of maintenance tasks 
reduced more than 10 times. 



The pyramid.

Data archival

What It Involves: Moving outdated or rarely 
accessed data to cold storage solutions or 
secondary databases to reduce the load on 
your primary database. By regularly 
archiving old transactional or log data you 
will be maintaining only a lean and efficient 
active dataset.
Why It Matters: Removing old data from 
your primary database keeps it running 
efficiently and improves query 
performance. Also it makes cold storage 
cheaper and reduces the cost of 
maintaining high-performance storage for 
inactive data. Basic database setup

Indexing

Application fixes

Queries optimisation

Workloads segregation

Data modularization

Partitioning

Data archival

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Data archival
Problem: Database performance and cost degrades with growing volumes. 

Solution: Cold data moved to a long-term storage with a slow access.



The pyramid.

Horizontal Sharding

What It Involves: Splitting data across 
multiple databases (shards) to distribute the 
load and allow the database to scale 
horizontally.
Why It Matters: Sharding allows your 
database to scale beyond the limits of a 
single machine, making it capable of 
handling large datasets and high traffic. Basic database setup

Indexing

Application fixes

Queries optimisation

Workloads segregation

Data modularization

Partitioning

Data archival

Horizontal 
Sharding

Sc
al

e 
an

d 
C

om
pl

ex
ity



The pyramid. Real world example.

Horizontal Sharding

A step we havenʼt needed to 
take… yet.



REMEMBER  THE TITLE HERE IS ALL CAPS!!!

TAKEAWAYS



The pyramid.

Scaling 400x smartly: 
Applying just enough 
complexity at the right 
time.

Basic database setup

Indexing

Application fixes

Queries optimisation

Workloads segregation

Data modularization

Partitioning

Data archival

Horizontal 
Sharding

Sc
al

e 
an

d 
C

om
pl

ex
ity



Once you’ve entered your text, select both content blocks and align the bottom text box with the guide provided. 
This will ensure that your slide layouts don’t jump around as you move from slide to slide.  

Our scaling journey wasnʼt smooth sailing, but we made it 
happen.

So can you.



MISSION DAY  ONWARDS

THANKS



Stay in Touch
Dmytro Hnatiuk

www.linkedin.com/in/dhnatiuk


